C.U.SHAH UNIVERSITY Summer Examination-2016

Subject Name : Introduction to Quantum Mechanics

Subject Code : 4SC06QMC1		Branch: B.Sc. (Physics)	
Semester: 6	Date : 19/05/2016	Time : 02:30 To 05:30	Marks : 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

- **a**) Write equation of Higenberg uncertainty principle.
- **b**) What is called free particle?
- c) Write Schrodinger's equation for free particle in three dimension.
- d) Give the Max Born's physical interpretation of wave function
- e) Give the expectation value of position of particle.
- **f**) Give any two conditions of wave-function Ψ .
- g) The momentum operator is given by.....
- h) Define angular momentum operators.
- i) Write the equation of potential energy for simple harmonic oscillator.
- **j**) $[x, P_x] = \dots$
- **k**) $[x, P_z] = \dots$
- **l**) $(AB)^+ = \dots$
- **m**) Define the Adjoint operator.
- n) Write the plank's equation for energy

Page 1 || 2

14

11000				
Q-2	2 Attempt all questions			
	a)	Obtain Schrodinger's equation for free particle in one dimension.	7	
	b)	Explain: Box normalization.	4	
	c)	Obtain the formula of D'Broglie's wavelength.	3	
Q-3	Attem	pt all questions	(14)	
	a)	Explain: Conservation of Probability.	7	
	b)	Derive: Ehrenfest's theorem	7	
Q-4	-4 Attempt all questions			
	a)	Obtain time independent Schrodinger's equation.	7	
	b)	Explain: Normalization of wave function.	4	
	c)	Obtain the normalized function for $\phi = e^{i\theta}$, where $0 < \theta < 2\pi$.	3	
Q-5	Attem	.ttempt all questions (
	a)	Obtain the solution of square well potential, if energy is negative (E<0).	7	
	b)	Explain the quantum mechanical tunneling for square potential barrier.	7	
Q-6	Attempt all questions		(14)	
	a)	Define: Self adjoint operator, Show that eigen value of Self adjoint operator is real.	5	
	b)	Write short note on Dirac Delta function.	5	
	c)	Prove that momentum operator is Self adjoint.	4	
Q-7	Attem	pt all questions	(14)	
	a)	Show that expectation values of a self-adjoint operator is real.	5	
	b)	Prove that $[L_x, L_y] = i\hbar L_z$	5	
	c)	Prove that $L^2 = r^2 p^2 - (\vec{r} \cdot \vec{p})^2 + i\hbar(\vec{r} \cdot \vec{p}).$	4	
Q-8	Attem	pt all questions	(14)	
	a)	Obtain Schrodinger's equation and eigen values for simple harmonic oscillator.	7	
	b)	Obtain the solution of the radial equation and energy levels for hydrogen atom.	7	

Attempt any Four Questions from Q-2 to Q-8

Page 2 || 2

